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Abstract

A systematic construction of the Green’s matrix for a second-order self-adjoint
matrix differential operator from the linearly independent solutions of the
corresponding homogeneous differential equation set is carried out. We follow
the general approach of extracting the Green’s matrix from the Green’s matrix of
the corresponding first-order system. This construction is required in the cases
where the differential equation set cannot be turned to an algebraic equation
set via transform techniques.

PACS number: 02.60.L;j

1. Introduction

In physics, matrix differential operators acting on vector functions appear in many different
contexts from classical electromagnetism to quantum field theory. The Green’s matrices of
these operators are needed because of their own physical interpretation as propagators in
quantum field theory, or in order to find the solutions of the corresponding non-homogeneous
differential equation set.

In most cases, Green’s matrices are obtained by using the Fourier transform technique or
by using eigenfunction expansions which turn the differential equation set to an algebraic one.
However, these techniques are not applicable in some circumstances such as for the matrix
differential operator appearing in the (1+1)-dimensional Abelian—Higgs model [1, 2]. In this
model, when small field fluctuations around classical field configurations are investigated, the
Lagrangian of the theory, which is second order in fluctuations, it involves a 4 x 4 matrix
differential operator. The diagonal entries of this operator are the differential operators of
the modified Bessel type. Off-diagonal ‘potential’ terms are the functions of classical field
configurations which are only available as discrete numeric data for the generic values of
parameters in the theory. The Green’s matrix of this operator is required in calculating
the functional determinant of the operator which gives one-loop corrections about a classical
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solution such as an instanton (for a nice account of functional determinants using the Gel’fand—
Yaglom technique see [3]). The Green’s function technique is one of the methods used in
such a determinant calculation. Due to the existence of the modified Bessel-type operators
and the discrete numerical data, it is not possible to apply Fourier transform and eigenfunction
expansion in this case. However, in a numerical study, it is relatively easy to obtain linearly
independent solutions of the corresponding homogeneous differential equations. Therefore,
the construction of the Green’s matrix from these solutions as in the case of a single differential
operator is required.

It is worth considering the underlying physical problem in some detail in order to see
why one encounters a matrix differential operator which is hard to handle. In [4], ’t Hooft
studied the one-loop tunnelling amplitude in the background of a Yang—Mills instanton for a
theory which contains massless scalar and fermion fields. In this calculation, field fluctuations
do not couple, and the functional determinants of single differential operators are calculated.
Dunne et al [5, 6] extended the instanton determinant calculation to the arbitrary quark mass
case. 't Hooft [4] pointed out that in order to remove the infrared divergence of the theory,
one needs to introduce the Higgs field. However, due to simple scaling arguments, there is
no instanton solution in this case. It is still viable to perform the calculations in the same
instanton background, but with certain instanton size, since it was shown in [4] and in [7], with
a more elaborate discussion, that the Higgs particle can be taken as approximately massless.
However, if one studies the effect of the quantum fluctuations around an instanton background
with non-trivial Higgs field configuration, as in the case of the 1+1 Abelian—Higgs model, field
fluctuations do couple to each other and one needs to struggle with the functional determinant
calculation of a matrix differential operator.

In this paper, we consider a generic second-order self-adjoint! n x n matrix differential
operator of the form

My, Viax) - Vip(x)
Via(x) My, - Va(x)

x = : : _ ) , (D
Vln(-x) V2n(x) e Mnn,x

where the diagonal entries are of the form

M = d . d .
ii,x = [a (pz OC)E) +Clz (x):| )

and the off-diagonal entries V;; = Vj; are just continuous functions. We aim to carry out
an explicit construction of the Green’s matrix from the linearly independent solutions of the
corresponding homogeneous differential equations.

First of all, let us review the literature on Green’s matrices. Among the standard textbooks,
only the book of Courant and Hilbert [8] involves a short discussion on the properties of the
Green’s matrix (‘tensor’ as called in [8]) without a construction. There are also general works
on Green’s matrices. In [9], Cole studied the Green’s matrix of a first-order differential equation
set, and constructed the Green’s matrix from the solutions of the corresponding homogeneous
first-order differential equation set. Cole also constructed the Green’s function of a higher
derivative differential operator by converting the operator to a first-order matrix differential
operator. Reid [10] constructed the Green’s matrix for, again, a first-order differential equation
set from the solutions of the corresponding homogeneous differential equation set. He also

! Self-adjointness requires symmetry of the matrix operator besides the self-adjointness of the differential operators
on the diagonals.
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developed the properties of the Green’s matrices of higher order differential equation sets
without giving the Green’s matrix. Both Cole and Reid focused on general differential
operators which are not self-adjoint. Naimark [11] studied Green’s matrices of the nth-order
linear matrix differential operators for general homogeneous boundary conditions relating
vector function and its derivatives up to the (n — 1)st order at the boundaries. He gave the
Green’s matrix constructed from the solutions of homogeneous differential equations for this
general system and outlines a way to prove his result by the method of variation of parameters.
This result is also for general matrix differential operators which are not self-adjoint. In order
to extract the Green’s matrix for the second-order self-adjoint case, one needs some of the
intermediate results of our construction. The results and analysis of Naimark are too general to
be directly applicable to the second-order self-adjoint case that appears frequently in physical
applications.

There are also studies which specialize to second-order differential equation sets. Bhagat
[12, 13] worked on the case of a second-order self-adjoint 2 x 2 matrix differential operator.
Heimes [14] worked on second-order linear matrix differential operators which are not
necessarily self-adjoint. He gave an analogue of our result for second-order linear systems
with initial conditions, and without an explicit construction only mentioned that the proper
method of obtaining the Green’s matrix is to transform the second-order system to the first-
order system. Jodar [15] worked on an algebraic construction which may not work in every
case.

Applications of Green’s matrices to physical problems have been studied in the literature,
and authors constructed Green’s matrices for their specific problem without a general
construction. Baacke [16] gave a construction for a specific matrix differential operator in a
heuristic way. His operator involves diagonals of the same self-adjoint operator. He studied
one-loop effects in various field theories using Green’s matrices found by this construction [1,
2,16, 17]. In [18], again there is a construction for a specific operator of a 2 x 2 matrix with the
same self-adjoint diagonals. In [18], the main emphasis is on the boundary conditions of the
underlying physical system which is a magnetic multilayer structure. Thus, in the literature
the Green’s matrix of the operator given in (1) seems to be lacking. M, is a physically
relevant differential operator: for example, it appears in the computation of one-loop quantum
corrections around the vortices of the Abelian—Higgs model on the hyperbolic plane [19].

Let us describe the outline of the paper. First of all, we develop the properties of the
Green’s matrix in section 2. Section 3 is devoted to the construction of the Green’s matrix.
Construction is carried out in two ways. In the first way, the Green’s matrix of a second-order
system is extracted from the Green’s matrix of the corresponding first-order system. We
follow the general approach developed in [9]. The basic idea of transforming the second-order
system to the first-order system is also applied in the constructions of [14] and [18]. In the
second way of construction, we start with a guess on the form of the Green’s matrix, which is
along the lines of [16].

To fix the notation, let us note that small bold letters, e.g. y, represent vectors, and capital
bold letters, e.g. G, represent matrices. x appearing as an index refers to a differential operator
such as M,. Repeated indices on different matrices are to be summed over, unless otherwise
stated. Repeated indices on a single matrix refer to a diagonal element. Also worth noting
is the nomenclature: to distinguish the Green’s function of a single differential operator, we
choose the name Green’s matrix for coupled equations.
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2. Properties of the Green’s matrix

Let us consider a linear second-order coupled differential equation set:
M. y(x) = h(x), x € [a, D], 2

where y, h are n-dimensional vector functions, and M, is the (n x n)-dimensional self-adjoint
matrix differential operator of the form (1). The Green’s matrix, G(x, t), of the differential
operator, M, can be defined with the formal solution

b
¥(x) = / dt G(x, Dh(), 3)

where G(x, t) is an n X n matrix.
In this paper, homogeneous boundary conditions are considered:
y(a) =o, y(®) =o,

where o is the n-dimensional zero vector. These boundary conditions impose the following
conditions on the Green’s matrix:

G(a,t) =0, G(,t) =0,

where O is an n X n zero matrix.
The formal solution of the differential equation set implies

M, ;iGj(x,1) =836 (x — 1), “4)

where i, j, k indices run from 1 to n. This relation is an equality of distributions. Integrals
of these distributions with a test function yield further properties of the Green’s matrix. In
obtaining these properties, the cases i = k and i # k will be investigated separately.

Case i # k. The kth column of the Green’s matrix is a solution of homogeneous differential
equations except the kth equation, as implied by

M, i;Gjr(x, 1) = 0.

Each differential equation involves a term of the form

dx

where there is no summation on i. In order to satisfy these (n — 1) homogeneous differential
equations, first- and second-order derivatives in the above term should not yield any
singularities, since the other terms of the differential equation contain continuous potentials.
Thus, elements of the kth column should be continuous and should have continuous first
derivatives for any x € [a, b], except G (x, t) which is investigated in the case i = k below.

d d
M, ;iGi(x,1) = |:— (Pi(ﬂa) +Qi(x)i| Gir(x, 1)

Case i = k. The kth column of the Green’s matrix is a solution of the kth homogeneous
differential equation for x € [a, t) U (z, b], as implied by

M, ;iGi(x,t) =8(x —1),

where there is no summation on k. This equation contains the term

d d
M, i G (x, 1) = [a <pk(x)a> +C]k(x)i| Gii(x, 1).

Since

Mx.ijjk(x, t)=0,
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for x # t, Gy (x, t) should be continuous and has continuous first derivatives for the points
other than x = ¢.

Let us consider the behaviour at x = ¢. Since all elements of the kth column other
than Gy (x,t) are continuous at x = ¢, Dirac delta behaviour comes from G (x,?). A
discontinuity in G (x, t) yields a more severe singularity than the Dirac delta upon taking the
second derivative. Thus, G, (x, t) is continuous at x = ¢ and the first derivative of G (x, 1)

has the usual discontinuity
d t+e
lim —G;;i(x, 1) = —.
e—0 dx e Di (l )
As in the case of the Green’s function for a single differential operator, the self-adjointness
of M, and the homogeneous boundary conditions yield a symmetry property for the Green’s
matrix:

(G (x, x2) M G ja(x, x1) = (GT )i (x, x2)88 (x — x1)
= Gi(x, x2)M, ;;G ji(x, x1) = G (x, x2)8 (x — x1),
and
(G )i (x, x1)M, 1 G j1(x, x2) = (GT )i (x, x1)8is8 (x — x2)
= Gi(x, x))M, ;;Gji(x, x2) = Gy (x, x1)8 (x — x2) .
After integrating the above two equations over the interval [a, b] and subtracting them side by
side, one obtains
b
f [Git(x, x))My ;G ji(x, x1) — Gig(x, x)M, ;G ji (x, x2)]dx = G (x1, x2) — Gr(x2, x1).
Calculating the left-hand side.
Fori = j:

=f

Adding and subtracting p; (x) % Gii(x, x0) % Gir(x, xy) yield

G d d G G d d G dx
iz(X,Xz)a(Pi(x)a ik(X,x1)> - ik(X,xl)a <Pi(x)a iz(x,xz)> .

brd d d d
E / . (Gil(xvxz)pi(x)_Gik(xs x1)) - — (Gik(X, X1)Pi(x)—Gil(X,xz)) dx.
—~Ja Ldx dx dx dx

After the integration, one obtains

x=b

d d
> [(Gﬂ(x,n)m(x)acik(x,xl)) - (G,-k(x,xl)pi(x)d—G,-l(x,m)} =0,
X

i X=a
from G jx(a, x') =0, G j; (b,x) = 0 for any j and k.
Fori # j:
b
> f [Gir(x, X2) MG ji(x, x1) — Gir(x, X)) Mo ;G j1 (x, x)] dx,
i,jsi#j "¢
contains terms like

b
{/ [Gu(x, x2)M; 120G (x, x1) — Gri(x, xl)Mx,IZGZZ(vaZ)]dx}

b
+ {/ [Gou(x, x2) My 21G1i(x, x1) — sz(x,xl)Mx,zlGlz(x,xz)]dx} ,

which vanish since the matrix differential operator M, is symmetric.
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Thus, one obtains the symmetry property of the Green’s matrix:
Gu (x1, x2) = G (x2, x1) .
As aresult, the Green’s matrix of a second-order self-adjoint matrix differential operator
satisfies (4) and the homogeneous boundary conditions. Rewriting them together, we have
M, ;jGji(x, x") = 8id(x — x'); Gjk(a,x") =0, Gjr(b,x")=0.
The properties of the Green’s matrix developed in this section can be summarized as follows.

e The kth column of the Green’s matrix satisfies the homogeneous differential equations
except at one point x = ¢ for the equation i = k:
M, ;G (x,1) =0, {{Z:;)]L’J(t,b], z;i
e The Green’s matrix is continuous at x = ¢.
e The derivative of the Green’s matrix at point x = ¢ is continuous for the off-diagonal
elements and has a jump of 1/p;(¢) for diagonal elements:
=1 pi®’
1—€ 0 i#j.
e The Green’s matrix has the the following symmetry:
G(x,1) =G (1,x).

These properties are also given in [8].

d
o ,
li g Gy

3. Construction of the Green’s matrix

A standard way of constructing the Green’s function for a second-order linear self-adjoint
differential operator

L d (x) d +q(x)
= — x)— X),
dx P dx i
defined in [a, b] is to use the two linearly independent solutions of homogeneous differential

equation satisfying

L,u(x) =0, u(a) =0,

L,v(x) =0, v(b) =0.
The motivation for such a construction follows the observation of two points. First, the Green’s
function satisfies the homogeneous differential equation, except at x = ¢. The second point is

the correspondence between the derivative property of the Green’s function:
t+e

d
lim —G(x, 1) =
e—0 dx

—e P’
and the Wronskian of the solutions u and v:

!

, constant
Ww,v)=uv —vu = ——.

&)
p

Since the columns of our Green’s matrix satisfy the homogeneous differential equation
set except at one point x = f, it is suggestive that the Green’s matrix can be constructed from
the solutions of the homogeneous differential equation. In this section, this construction will
be given. In section 3.1, analogues of the Wronskian, (5), are obtained. A direct approach
for constructing the Green’s matrix involves first transforming the second-order differential
equation set to a first-order differential equation set. Then, the Green’s matrix of the second-
order set is extracted from the Green’s matrix of the first-order set. This approach is addressed

in section 3.2.

6
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3.1. Analogues of the Wronskian

In general, 2n linearly independent solutions of
MxY(X) =0

can be (re)defined in such a way that n of them satisfy the left boundary condition, and the
others satisfy the right boundary condition. Let us call them u® and v#, respectively, satisfying

u® (a) = o, v (b) = o,

where the Greek superscripts label the solutions.
Following the similar steps leading to (5), it is possible to obtain analogue relations for
the matrix differential operator case. One can write
Ul ()M ;0% (x) = 0,
vf () My iju (x) = 0.

Subtracting side by side yields (the superscripts @ and 8 are suppressed since the equation
holds for every o and f; also, the x dependence of the solutions is not explicitly shown up
until the final result)

u,‘Mx,,-jvj — U,‘Mx’,‘juj =0.

Since the matrix differential operator is symmetric, terms like vy M,v, and v, My 1u; cancel
each other. After these cancellations, one obtains

Z(uiMx,iivi — M, ;iu;) =0= Z[ui(PiU,{)/ —vi(piu;)'1=0,
i ;
= Y [wipiv) — (ipiu))1=0,
;
= Z(u,-piv{ — v; p;ju;) = constant.
;

After putting the superscripts which label the solutions, and showing the explicit x
dependence of solutions, one ends up with

o d B B d o off
D opi) () vl ) = v (o) Tuf ) ) = ¢+, (6)

where C*? are constants. The matrix form of this equation is
UT()P@)V'(x) = U) (1)P)V(x) = C, (7)

where U and V are n x n matrices whose columns are the u® and v# vectors, respectively; the
P matrix is defined as

P(x) = diag [p1(x), p2(x), ..., pa(x)].
Other two relations that can be derived similarly are
U" (0)P)U'(x) — (U) (0)P(0)U) = O, ®)
VIP@V(x) — (V) (0)P(x)V(x) = O. ©))
Here, using the boundary conditions u* (a) = o and v# (b) = o0 in (8) and (9), respectively,

one finds that the constant matrices on the right-hand sides are equal to zero. Rearranging
these equations yields symmetric matrices
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PUU! = (pUU DT, (10)
PVV~! = @VVHT, (11)

in (a, b), since the P matrix is diagonal. Using these symmetric forms in (7) yields
PVV —PUU' = (U") ' cV, (12)

in (a, b). Note that the right-hand side is necessarily a symmetric matrix due to the symmetry
of the left-hand side.

3.2. Green’s matrix of the second-order operator from the Green’s matrix of the
corresponding first-order differential equation set

Let us rewrite the second-order system given in (2) more explicitly
My cy1(x) + Via(0)y2(x) + -+ + Vip () ya (x) = by (x),
Via()y1(x) + Moz xy2(x) + -+ + Vau () ya (x) = ha(x),
: + : + 0+ : =
Vin()y1(x) + Vau () y2(x) + -+ + My yn(x) = hy(x).
with the boundary conditions
yi (@) =0, yi (b) =0.

Let us rewrite the system of second-order differential equations as a system of first-order
equations with the definitions

d
zi(x) = yi(x), Zni (X) = d_yi(x)'
x
Then, the first-order system can be written in the following form:
Z(x) = A(x)z(x) +f(x) (13)
where
0 0 0 1 0 -~ 0] T 0]
0 0 e 0 0 1 -~ 0 0
22
0 0 e 0 0 o .. 1 z. 0
A=|_a _Ve ... _Vu _2 o ... o | z=|"1| f=|n
P P P P , n+l Zl
Y e 0 _h s
p22 pz pzz 0 pz Ln+2 P2
v, v, , h.n
A Y 0 0o ... —I | Zon | -
L Pn DPn Pn Pn  Pn
The boundary conditions can be restated in this notation
B,z (a) + B,z (b) = o, (14)

where B, and B, are 2n x 2n matrices in the following form:

I O 00
B":[o o] B":[I o] (as)

where I is the n x n identity matrix.

8
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The Green’s matrix of the first-order system can be defined with the formal solution

b
Z(x) :/ drG(x, 1)f(2).

Then, the formal solution of the second-order system is

b
Y(6) = Uz (x) = / AUy 20 G (3, DE(D),

where
Uy =M1 O]
f(t) can be rewritten as
(0]
(1) = LGxnpfl(t)h(t)’ Lysn = |:I] .

Then,

b
¥(x) = / AUy 220G 1 (x, ) Lawen P~ (OR(D).

a

Comparing this result with (3) yields
G(x, 1) = Upx2sG1 (x, Ly P71 (0). (16)

Multiplications with U, 2, and L, ., choose an up-right n x n block of the Green’s matrix
of the first-order system.

The relation between the Green’s matrix of the first-order system and the Green’s matrix
of the second-order system is established. Let us continue with reproducing the result of Cole
[9] for the Green’s matrix of a first-order system.

3.2.1. The Green’s matrix of a first-order differential equation set. Let us have a ‘generic’
first-order differential equation set in the form

Z(x) = A)z(x) +f(x), a7

where z, f are [ the dimensional vectors and A is an (I x [)-dimensional matrix.
First, assume a particular solution of the form

z,(x) = W(x)g(x)

where g is an unknown column vector, and the so-called fundamental matrix W is the matrix
whose columns are the [/ linearly independent solutions of the homogeneous differential
equation set, z'(x) = A(x)z(x); i.e.

W) =Ax)W(x).

Then, guessing the particular solution in the non-homogeneous equation yields the formal
solution for g(x) as

g(x) = / dt W ()f(r).
Therefore, the general solution for the generic first-order differential equation set is
X
z(x) = W(x)/ dt WD) (1) + W(x)e, (18)

where ¢ is a constant vector.
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Any well-posed boundary condition which yields a unique solution to the boundary value
problem can be put in a matrix form. Consider the boundary conditions

B,z (a) + B,z (b) = o. (19)

Applying these boundary conditions to the general solution fixes ¢ as
b
c=—-D"'B,W () / drW (O E (1)

where D is defined by
D=B,W()+B,W(®).

Using this result in the general solution, one obtained
x b
z(x) = W(x) f AW (O f(r) — W(x)D™'B,W (b) / AW (O (r). (20)
This result can be written in a final form by rearranging the first term on the right-hand side as

W(x) [ ' drW (O f(r) = W(x)D™'D / ' AW E (1),
=W(@x)D ! {B,W (@) + B,W (b)} / ' dtW= (O E (1),
=W(x)D'B,W (a) / ' AW (O E(1)

+Wx@)D'B,W (b) / dtW= (D) (7).
Using this in (20) yields

x b
z(x) = Wx)D"'B,W (a) / dtW= () f(r) — W(x)D™'B,W (b) / dtW= (1),

or

b
z(x) :/ dt G (x, H)f(1)

where the Green’s matrix is given as

~Wx)D'B,WB)W (1), x <t,

Gi(x, 1) = {W(x)DlBaW (@) W), x >t

21

3.2.2. Green’s matrix of the second-order system. Using (16), the Green’s matrix for the
second-order system is

—U,n W@)D'B,W () W (1) Loy sn P (1), x <1,
UannW(x)DilBaW (a) Wil(t)Lannpil(t)v X > t.

Note that W which is the fundamental matrix of the first-order set is the Wronskian matrix of
the second order set. With this result, we actually achieve our goal which is to construct the
Green’s matrix of the second order self-adjoint matrix differential operator from the linearly
independent solutions of the corresponding homogenous differential equation set. However,
we continue to work on this result in order to find a more compact form and to find forms in
which the properties of the Green’s matrix are more transparent.

First of all, let us transform the Green’s matrix to a form in which boundary conditions are
explicit. In order to achieve this goal, let us assume that the 2n linearly independent solutions

G(x,t) = { (22)

10
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forming the Wronskian matrix W is chosen in such a way that n of them satisfy one boundary
condition, and the other n satisfy the other boundary condition; i.e.

M, u“(x) = o, u® (a) = o,
M, v?(x) = o, vP (b) = o,
where o, 8 = 1, ..., n. Then, let us choose W in the form
U VvV
v=lo v]

where U and V are the n x n matrices whose columns are u® and v”, respectively. Using this
form of W greatly simplifies the matrix multiplications given in (22) and yields the results

4 [1 0 . [0 o0
D BbW(b)_[O 0}’ D BaW(a)_|:O 1]

The block inverse of the Wronskian matrix can be given as (see the appendix)
W — U l+U vV —UuUlty)luut!t —utlvy = Uity !

- _(V/ _ U/U—IV)—IU/U—I (V, _ U/U—IV)—I ’
where each matrix is a function of 7. Note that U(z) is singular at x = t = a. Thus, x < ¢ part
of the Green’s matrix should be written in such a way that the x = a boundary value is given
separately.

Putting these results in (22) yields a form where boundary conditions are explicitly
satisfied:

0, a=x<t,
G, 1) = {U@U T OVEOV' (@) —U@OU T (OV@E)'P (1), a<x<t, (23)
V@) V(1) =UOU V@) "P (1), x>t
Or, after rearranging, one has a more symmetric form:
(0] a=x <t,
U@U OPOV' OV @) = UOU )], a<x<t,
Gx, 1) = —1 ’ —1 / —1 —1 (24
VOV OPONV OV () —UOU )], b>x2>t,
(0] b=x>t.
With the help of (12), a final compact form of the Green’s matrix is obtained as
_UC) V(@) x <1,
G0 = {V(x)C_lUT(t), x>t 25
Or, writing in terms of the elements
Ly Jurevio. x <t
Gij(x,1) = (C )5(, P (26)
v; (x)u‘}‘(t), x>t.

where there is summation on the Greek indices.
In all of the above forms of the Green’s matrix, some properties are explicit, while the
others are not. Now, let us investigate these properties.

3.2.3. Verifying the properties of the Green’s matrix. Let us show that the Green’s matrix
that we have constructed satisfies the properties listed in section 2.

e It obviously satisfies the homogeneous boundary conditions in the forms starting with
(23).

11
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e Its columns are formed by the solutions of the homogeneous differential equation.
e It is continuous at x = ¢, which is explicit in (23) and (24).
o In the forms (25) and (26), the symmetry property is explicit. Let us write G (¢, x):

T _ Vx)C~'UT (1), t <x,
G 0= {U(x)(c—‘)TVTm, > x,

which is simply equal to G(x, 7).
e The derivative property of the Green’s matrix can be given in the matrix form as

t+e

=P (1. 27

r—e

d
lim —G(x, ¢
Jim == (x, 1)
Using the Green’s matrix form given in (24):

V@OV OPONV' OV ) —U@OU ()] ™!
—UOU ' OPONV OV @) —UOU N1 =P~ @).

3.3. Construction with a guess

Now, let us try to construct the Green’s matrix in a similar way as in the case of a single
differential operator. A somewhat similar derivation was given in [16] for a specific case.
Since the columns of the Green’s matrix are the solutions of the homogeneous differential
equation, the Green’s matrix should have the following form in order to satisfy the boundary
conditions:

Ux)S(), x<t,
V)T(), x>t,

where S(#) and T(z) are the unknown matrices. In this form, each column is a linear
combination of the linearly independent solutions. Surely, this form is the most general
guess satisfying the boundary conditions and the homogeneous differential equation set. After
putting the proposal in the derivative property in (27), one obtains

VOT@) —U@)SE) =P (1).
Using (12), one has
P! =(vv'!-vuhvcu.
Putting it in the derivative property, and using the symmetry of VC~'U7 yield
VT-US=VvCc'U -u@H Vv
Then, the unknown S and T matrices are
S=(CHVT,
T=C'U".

This result yields the same form given in (25).

G(x,t) = {

4. Discussion and conclusion

In this paper, we constructed the Green’s matrix of a second-order self-adjoint matrix
differential operator. This construction is useful especially in the numerical studies, since
obtaining the linearly independent solutions of the corresponding homogeneous differential
equation set is easy with linearly independent initial conditions. Just after obtaining the set
of linearly independent solutions, one may directly use (22) and obtain the Green’s matrix

12
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without considering the boundary behaviour of the solutions. However, once the linearly
independent solutions are redefined such that half of them satisfy one homogeneous boundary
condition and the other half the other boundary, or are obtained directly in this way with proper
boundary conditions, the compact form of the Green’s matrix in (25) can be used by calculating
the constant matrix in (7). By taking this route, one may avoid numerical errors coming from
correspondingly greater amount of matrix multiplications and inversions. Also, in the cases
where solving the corresponding homogeneous differential equation set analytically is easy,
construction of the Green’s matrix by use of (25) may become as easy as other techniques.

Extracting the Green’s matrix of a higher order differential equation set from the
corresponding first-order differential equation set is a useful technique which is not well
known in physics literature. Although we construct the Green’s matrix of a second-order
self-adjoint matrix differential operator by using the Green’s matrix of the corresponding first-
order differential equation set, due to its physical relevance, Green’s matrix for any higher
order linear (matrix) operator, either having self-adjointness property or not, can be extracted
from the Green’s matrix of the corresponding first-order differential equation set.

A final comment on the boundary conditions is that a differential equation set satisfying
boundary conditions other than the homogeneous ones can be handled as in the case of the
single differential operator. Construction of a Green’s matrix satisfying boundary conditions
other than homogeneous ones can be handled by the first method given in this paper.
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Appendix. Inverse of a block matrix

We reproduce the derivation given by Thornburg [20]. Let us have a 2n x 2n matrix in the

form
A B
C D
where A, B, C, D are the n x n matrices. The inverse of this matrix can be determined by

obtaining the block decomposition of this matrix.
Inverse of the following matrix forms can be found easily:

A O] A" o o B]' [Oo C
oD/ “[o D' c o] “[B' o]

1 S A P R e

If we block decompose of a general matrix in such a way that the above forms appear, then
taking inverse can be handled by using the above relations. In order to obtain the block
decomposition, one can use the following equation:

A B][E] [G AE +BF = G,
¢ p||F|T|H| T CE+DF=H.

13
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This equation set can be solved for F by multiplying the first equation with —CA~! and
summing with the second one. These operations are equal to multiplying coefficient matrix

with
I (0]
—CA ! 1

from left. Then, coefficient matrix becomes

A B
O D-CA'B

where S, = D — CA~!B is called the Schur complement of A. In order to solve equations in
E, the second equation should be multiplied with —BS;1 and summed with the first equation.
These operations are equal to multiplying the modified coefficient matrix with

1 -BS;'
K¢ I
from left. Afterwards, the coefficient matrix becomes
[A O
1O S4|°

Thus,

1 -BS,' I O][A B] [A O
o0 1 —CA™' IJ|C D] [0 S,

which yields the block decomposed form

A B] [ I O][I BS;'][[A O
|C D] [CA" I][0 I [|O S,;]

Then, the inverse of the 2n x 2n matrix can be found as
A Br [Al +A"'BS;'CA™! —AIBSZ'}
lC D -S;'cA™! s
Using the above result, the inverse of the Wronskian matrix is
v v]' _ v '+ulvv —uvulyylvo!t —utlvv —uuitvy !
U/ V/ - _(V/ _ U/U—IV)—IU/U—I (V/ _ U/U—IV)—I
Note that the linear independence of the solutions of the corresponding homogeneous
differential equation set implies invertibility of the Wronskian matrix and its four elements.
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